Permeability of muscle capillaries to microperoxidase
نویسندگان
چکیده
In this study we attempted to identify a morphologic counterpart of the small pore of muscle capillaries. The existence of such a pore has been postulated by physiologists to explain the permeability of muscle capillaries to small macromolecules. We injected mice intravenously with microperoxidase (MP) and fixed specimens of diaphragm at intervals of 0-250 s after the injection to localize the tracer by electron microscopy. The small size of MP (1,900 mol wt and 20 A molecular diameter [MD]) ensures its ready passage through the small pore since the latter is thought to be either a cylindrical channel 90 A in diameter or a slit 55 A wide. MP appears in the pericapillary interstitium within 30 s of initiation of its intravenous injection. The patterns of localization of MP observed within clefts between adjacent capillary endothelial cells indicate that some endothelial junctions are permeable to this tracer. Although small vesicles transfer MP across the endothelium, we do not believe that the vesicles transfer substantial amounts of MP into the pericapillary interstitium. We did not obtain evidence that MP crosses the endothelium of capillaries through channels formed either by a single vesicle or by a series of linked vesicles opening simultaneously at both surfaces of the endothelial cell. From our observations we conclude that some endothelial junctions of capillaries are permeable to MP, and that these permeable junctions are a plausible morphologic counterpart of the small pore.
منابع مشابه
Ocular vascular and epithelial barriers to microperoxidase.
Microperoxidase (MP) is an ultrastructural tracer of small molecular weight (1,900) derived from horse heart cytochrome c. Within the central nervous system, it is capable of entering the periaxonal space which is not open to horseradish peroxidase (HPR). Because of its small size and unique behavior, MP was used to probe ocular vascular and epithelial barriers. MP did not enter any ocular spac...
متن کاملThe Relation of Hydrostatic Pressure to the Gradient of Capillary Permeability
The gradient of permeability along the capillaries of voluntary muscle and the capillaries and venules of skin exists independently of the hydrostatic conditions, though influenced by them. Its presence cannot be explained by a graded tonic contraction of the capillaries. The evidence,-like that of previous papers,-points to local differences in the barrier offered by the wall of these vessels ...
متن کاملA Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries
This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...
متن کاملIncreased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor.
The vascular endothelial growth factor (VEGF) was originally described as vascular permeability factor due to its ability to increase microvascular permeability to plasma proteins. However, the vessel types (arteriolar, venular, and capillary) affected by VEGF and the modification of endothelial morphology in response to increased permeability induced by VEGF in vivo have not been precisely doc...
متن کاملTranscapillary Exchange in Relation to Capillary Circulation
Transcapillary exchange of diffusible solutes depends on capillary blood flow, Q; capillary permeability, P; and capillary surface area, S. In a single capillary, the extent of equilibration of a given solute depends on the ratio of Q, to the product of P and S. In a microvascular bed consisting of many capillaries, equilibration depends on the fraction of them which are open to blood flow at a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 76 شماره
صفحات -
تاریخ انتشار 1978